3.971 \(\int \frac {x}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx\)

Optimal. Leaf size=45 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )}{\sqrt {b} \sqrt {d}} \]

[Out]

arctanh(d^(1/2)*(b*x^2+a)^(1/2)/b^(1/2)/(d*x^2+c)^(1/2))/b^(1/2)/d^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {444, 63, 217, 206} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )}{\sqrt {b} \sqrt {d}} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

ArcTanh[(Sqrt[d]*Sqrt[a + b*x^2])/(Sqrt[b]*Sqrt[c + d*x^2])]/(Sqrt[b]*Sqrt[d])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x^2}\right )}{b}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2}}\right )}{b}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )}{\sqrt {b} \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 82, normalized size = 1.82 \[ \frac {\sqrt {c+d x^2} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {d} \sqrt {b c-a d} \sqrt {\frac {b \left (c+d x^2\right )}{b c-a d}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(Sqrt[c + d*x^2]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x^2])/Sqrt[b*c - a*d]])/(Sqrt[d]*Sqrt[b*c - a*d]*Sqrt[(b*(c + d*x
^2))/(b*c - a*d)])

________________________________________________________________________________________

fricas [B]  time = 0.67, size = 194, normalized size = 4.31 \[ \left [\frac {\sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x^{2} + 4 \, {\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {b d}\right )}{4 \, b d}, -\frac {\sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {-b d}}{2 \, {\left (b^{2} d^{2} x^{4} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x^{2}\right )}}\right )}{2 \, b d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(b*d)*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b*d*x^2 +
b*c + a*d)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(b*d))/(b*d), -1/2*sqrt(-b*d)*arctan(1/2*(2*b*d*x^2 + b*c + a*d
)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-b*d)/(b^2*d^2*x^4 + a*b*c*d + (b^2*c*d + a*b*d^2)*x^2))/(b*d)]

________________________________________________________________________________________

giac [A]  time = 0.42, size = 54, normalized size = 1.20 \[ -\frac {b \log \left ({\left | -\sqrt {b x^{2} + a} \sqrt {b d} + \sqrt {b^{2} c + {\left (b x^{2} + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d} {\left | b \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-b*log(abs(-sqrt(b*x^2 + a)*sqrt(b*d) + sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d)))/(sqrt(b*d)*abs(b))

________________________________________________________________________________________

maple [B]  time = 0.02, size = 103, normalized size = 2.29 \[ \frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )}{2 \sqrt {b d}\, \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x)

[Out]

1/2*ln(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))*(b*x^2+a)^(1/2)*
(d*x^2+c)^(1/2)/(b*d)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 1.22, size = 49, normalized size = 1.09 \[ -\frac {2\,\mathrm {atan}\left (\frac {b\,\left (\sqrt {d\,x^2+c}-\sqrt {c}\right )}{\sqrt {-b\,d}\,\left (\sqrt {b\,x^2+a}-\sqrt {a}\right )}\right )}{\sqrt {-b\,d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)),x)

[Out]

-(2*atan((b*((c + d*x^2)^(1/2) - c^(1/2)))/((-b*d)^(1/2)*((a + b*x^2)^(1/2) - a^(1/2)))))/(-b*d)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {a + b x^{2}} \sqrt {c + d x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x/(sqrt(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________